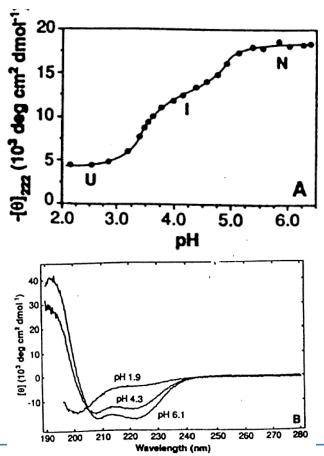
Protein denaturation by pH

Proteins can also be denatured by pH

Potential from the ion-pair interaction results in a **shift in the pKa** of the involved residues:

$$\Delta G^0 = -2.303 \ RT \ \Delta pK$$

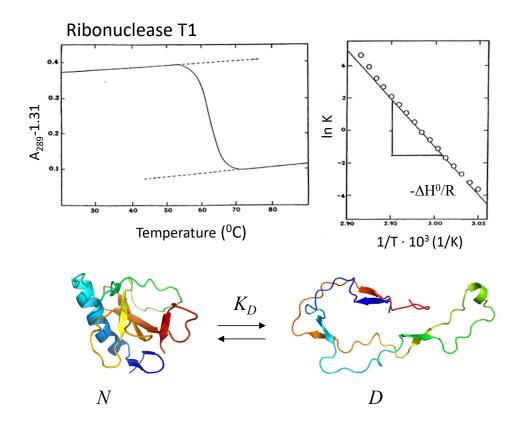

Contribution to protein stability:

- ion pairs are mostly on the surface of the protein
- the interactions are short range due to screening
- disruption of water shell reduces stability contribution

 $\Delta pK = pK(D) - pK(N)$ for acidic side chains

 $\Delta pK = pK(N) - pK(D)$ for basic side chains

pH denaturation of proteins


pK values of specific groups

	pK΄ ₁ α-COOH	pΚ' ₂ α-ΝΗ 3	pK' _R R-Gruppe
Glycin	2,34	9,6	
Alanin	2,34	9,69	
Leucin	2,36	9,60	
Serin	2,21	9,15	
Threonin	2,63	10,43	
Glutamin	2,17	9,13	
Asparaginsaure	2,09	9,82	3,86
Glutaminsäure	2,19	9,67	4,25
Histidin	1,82	9,17	6,0
Cystein	1,71	10,78	8,33
Tyrosin	2,20	9,11	10,07
Lysin	2,18	8,95	້ຳ0,53
Arginin	2,17	9,04	12,48

pH denaturation of apo-myoglobin

p. 2

Thermal denaturation

the T-dependence of K is given by:

$$\ln K(T) = -\frac{\Delta H^0}{RT} + \frac{\Delta S^0}{R}$$

derivative for T:

$$\frac{d \ln K}{dT} = \frac{\Delta H_{vH}^0}{RT^2}$$
$$\frac{d \ln K}{d1/T} = -\frac{\Delta H_{vH}^0}{R}$$

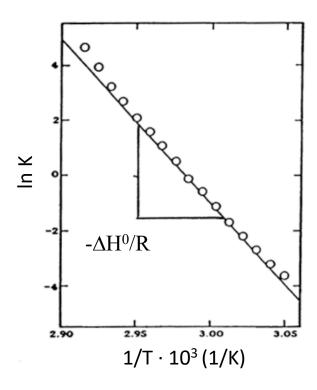
van't Hoff equation

Thermodynamic parameters of protein denaturation

Enthalpy:

Determined from slope of Van't Hoff plot

$$\frac{d \ln K}{d1/T} = -\frac{\Delta H_{vH}^0}{R}$$


within window of linear relationship

Entropy:

At T_m , the temperature of the mid-point of the transition ($\Delta G^0 = 0$)

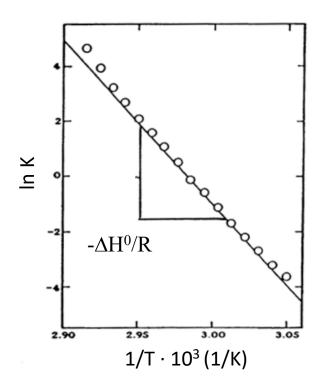
$$\Delta G^0 = \Delta H^0 - T \Delta S^0$$

$$\Delta S^0 = \Delta H^0 / T_m \quad \text{(for } \Delta G^0 = 0\text{)}$$

Quiz 2: Thermal transitions

- Another small protein is 99% folded at 328K and 1 % folded at 340 K
- what is the standard enthalpy ($\triangle H^0$) of its folding transition?
- also estimate the entropy of the transition (ΔS^0) !

Heat capacity changes in protein denaturation


Heat capacity:
$$C_P = \left(\frac{\partial H}{\partial T}\right)_P = \left(\frac{\partial Q}{\partial T}\right)_P$$

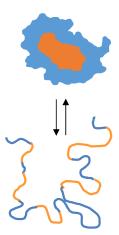
Change of internal energy upon heating, property of each global state

$$\Delta C_P^0 = C_{P, unfolded}^0 - C_{P, folded}^0$$

Curvature in Van't Hoff relations: The native state and the denatured state have different heat capacities.

Protein unfolding heat capacity is large and positive

$$\Delta C_p^0 > 0$$


Heat capacity of protein denaturation

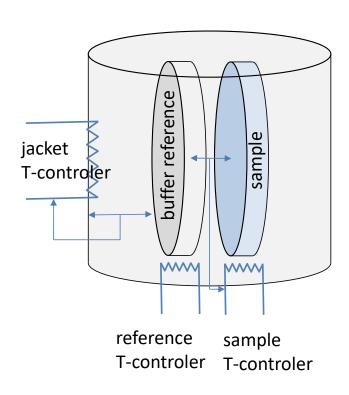
Definition of heat capacity:

$$\Delta C_p^{\ 0} = \frac{d\Delta H^0}{dT}$$

$$\Delta C_p^0 / T = \frac{d\Delta S^0}{dT}$$

both, ΔH^0 and ΔS^0 are temperature dependent

The molecular origin of $\Delta C_p^{\ 0} > 0$:


The native and the denatured state exhibit differences in solvation

in D, hydrophobic residues are exposed. The water structure leads to high heat capacity (compare to Lecture 1)

 $\Delta C_p^{\ 0}$ is usually 40-80 J mol $^{\!-\!1}$ K $^{\!-\!1}$ per residue

related to m-value (also dependent on ASA)

Measuring thermodynamic parameters: Differential Scanning Calorimetry (DSC)

Measures **amount of heat** required to change the **temperature** in the sample vs. the reference.

For an adiabatic isolated microcalorimeter, no heat exchange takes place with the environment

$$\delta Q = 0$$

according to first law

$$dU = dW$$

changes in internal energy solely depend on work within instrument

The partial molar heat capacity Cp

The heat capacity is defined as the **amount of heat** (Q) required to **change the temperature** by dT with constant pressure.

$$C_P = \left(\frac{\partial Q}{\partial T}\right)_P = \left(\frac{\partial H}{\partial T}\right)_P = \frac{dH}{dT}$$

Heat capacity of a protein solution $C_{P,sol}$ is a composite of partial molar heat capacity terms:

- Heat capacity of the solvent $C_{P,I}$
- Heat capacity of the protein (e.g. non-covalent interactions) $C_{P,2}$

From $C_{P,2}$ we can determine the enthalpy of protein folding/unfolding (n denotes the molar amounts)

$$C_{P2} = \left(\frac{\partial C_{PSol}}{\partial n_2}\right)_{T, p, n_i \neq 2}$$

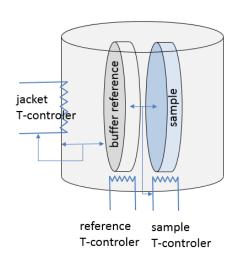
Using calorimetry to determine protein stability

Problem: $C_{P,2}$ cannot be directly measured

From calorimetry, the apparent molar heat capacity ($C_{P,app}$) is obtained

$$C_{Papp} = \frac{C_{PSol} - n_1 C_{P1}}{n_2}$$

$$C_{P2} = C_{Papp} + n_2 \left(\frac{\partial C_{Papp}}{\partial n_2}\right)_{T, p, n_i \neq 2}$$


this is the **difference** between the heat capacity of the solution $(C_{P,sol})$ and of the solvent $(C_{P,I})$

with:
$$C_{P2} = \left(\frac{\partial C_{PSol}}{\partial n_2}\right)_{T,p,n_i \neq 2}$$


this term can usually be neglected for employed protein concentrations

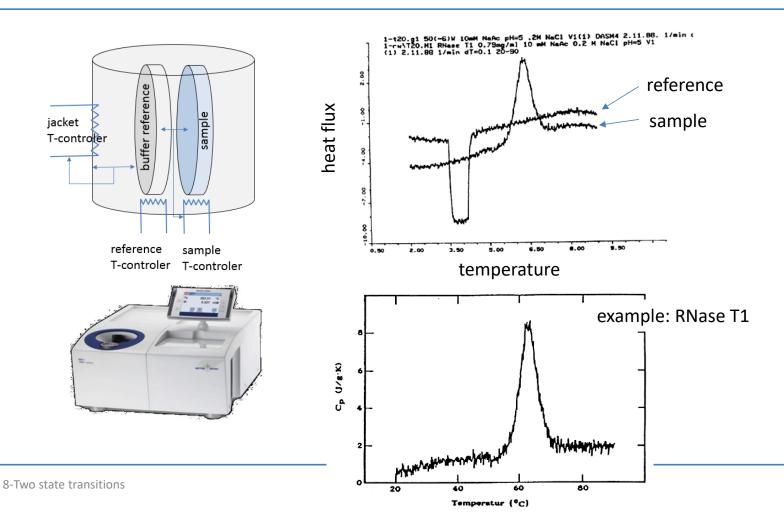
$$C_{P2} = C_{P1} - C_{Papp}$$

Determining heat capacity from calorimetry

offset correction between sample and reference

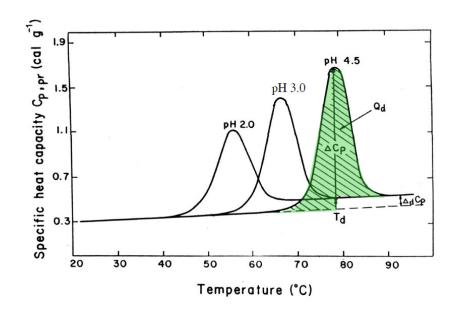
from normalized and calibrated difference follows the heat capacity change of protein unfolding

$$C_{P2} = C_{P1} \frac{v_P}{v_1} - \frac{Ck}{m_p} h$$


 $\textit{v}_\textit{P}$: partial specific volume of protein

 v_I : partial specific volume of solvent

h: normalization

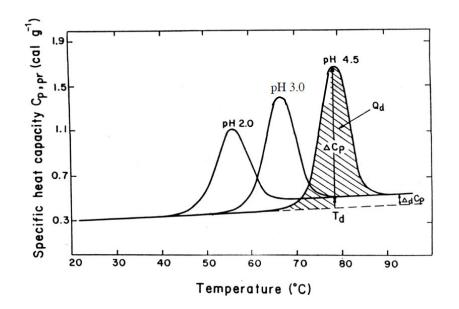

k: calibration constant

Determining heat capacity from calorimetry

p. 12

Enthalpy of conversion in protein denaturation

 $\Delta H_{\it m}(cal)$ of lysozyme denaturation as a function of pH


From integration of the curve the enthalpy of conversion (folded to unfolded) $\Delta H_m(cal)$ is determined

$$C_P = \frac{dH}{dT}$$

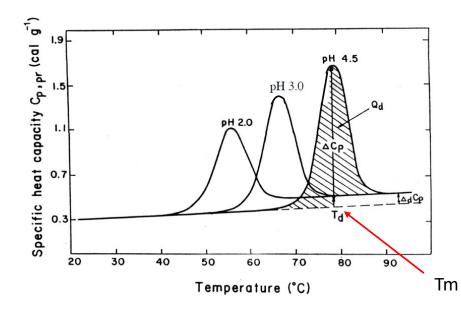
$$Q_d = \Delta H_m(cal) = \int C_p dT$$

model-free determination of enthalpy of state transition

Two-state folding or multistate transition?

 $\Delta H_{\it m}(cal)$ of lysozyme denaturation as a function of pH

comparing the areas under the curve, an equilibrium constant can be determined.

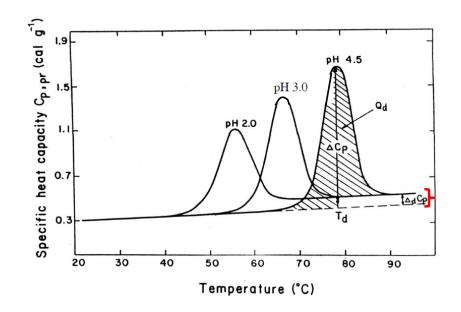

From K, Van't Hoff Enthalpy can be determined immediately, using:

$$\left(\frac{d \ln K}{dT}\right)_p = \frac{\Delta H_{v.H.}^0}{RT^2}$$

This assumes a two-state transition

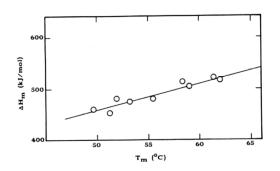
Only in this case, $\Delta H_m(cal) = \Delta H_{vH}^0$

Entropy of conversion


 $\Delta H_{\it m}(cal)$ of lysozyme denaturation as a function of pH

At the midpoint of the transition (T_m), the entropy can be determined

$$\Delta G = \Delta H - T \Delta S = 0$$


$$\Delta S_m = \frac{\Delta H_m}{T_m}$$

Heat capacity difference of unfolding

 ΔC_p can directly be obtained from the measured curve

Can also be determined from the temperature dependence of $\Delta H_{\it m}$, e.g. measured under different pH

Rnase T1 denaturation data

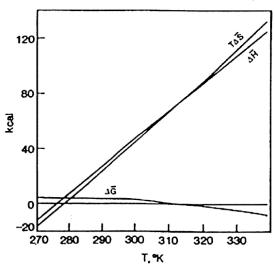
The protein stability curve

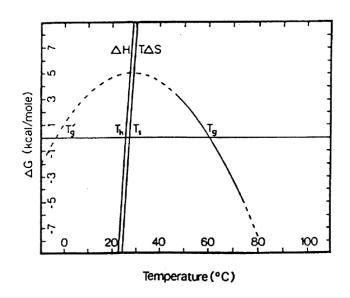
With heat capacity:

$$\frac{d\Delta H}{dT} = \Delta C_P \qquad \Delta H(T) = \Delta H(T_m) + \Delta C_P(T - T_m)$$

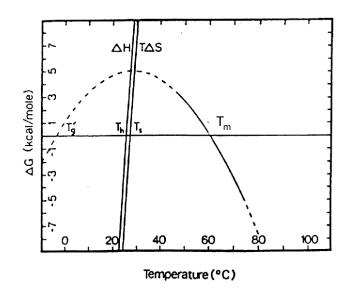
$$\frac{d\Delta S}{dT}T = \Delta C_P \qquad \Delta S(T) = \Delta S(T_m) + \Delta C_P \ln\left(\frac{T}{T_m}\right)$$

With heat capacity, the T-dependence of ΔG^0 becomes:


$$\Delta G^{0}(T) = \Delta H^{0}(T_{m}) - T \Delta S^{0}(T_{m}) + \Delta C_{p}^{0} \left(T - T_{m} - T \ln \frac{T}{T_{m}}\right)$$


The protein stability curve

With heat capacity, the T-dependence of ΔG^0 becomes:

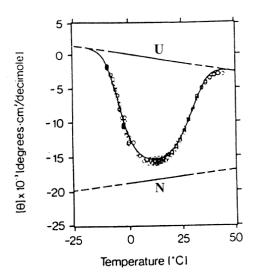

$$\Delta G^{0}(T) = \Delta H^{0}(T_{m}) - T \Delta S^{0}(T_{m}) + \Delta C_{p}^{0} \left(T - T_{m} - T \ln \frac{T}{T_{m}}\right)$$

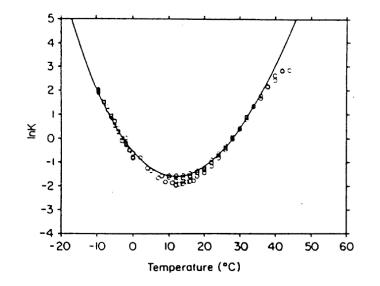
Example

The protein stability curve

Protein stability is maximal at $\Delta S^0 = \theta \ (T_S)$

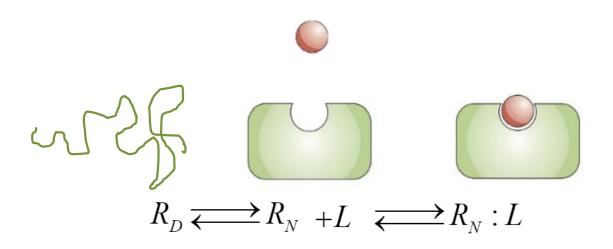
 K_D (equilibrium constant) is maximal at $\Delta H^0 = 0$ (T_H)

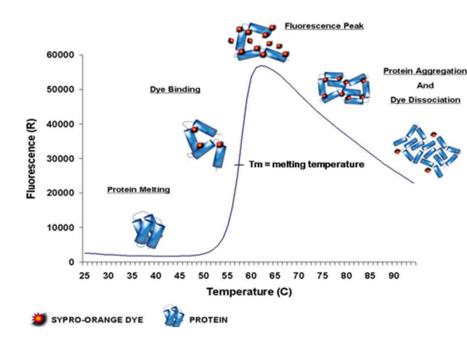

The transition mid-point (T_m) is at $\Delta G^0 = 0$ and $f_N = f_U = 0.5$


Protein cold denaturation

Protein stability curves show second Tm' at low temperature! → cold denaturation

Can be observed for some proteins / mutants:


Cold denaturation of lysozyme (destabilized mutant)

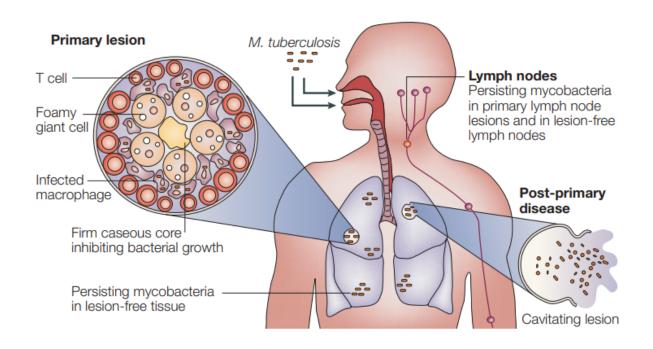

Proteins are stabilized by ligand binding

Protein stabilization by free energy of ligands

→ measuring protein stability as a screening tool

Differential Scanning Fluorimetry: A high-throughput assay to determine protein stability

source: Wikipedia

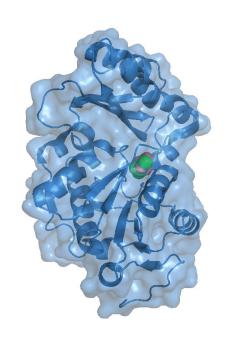

Differential Scanning Fluorimetry: Thermal shift assay

- Addition of a fluorophore
- binding to exposed hydrophobic sites: increase in fluorescence
- dyes: SYPRO orange
- High-throughput method
- ligand binding shifts Tm
- DSC: binding thermodynamics

$$\begin{array}{c} O \\ I \\ O = S \\ O^{-} \\ \end{array} \\ (CH_{2})_{n} \\ N \\ C_{m}H_{2m+1} \\ \end{array}$$

SYPRO Orange

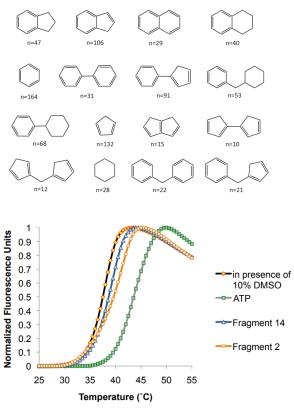
Case study: protein stability and pharmaceutical research for Tuberculosis

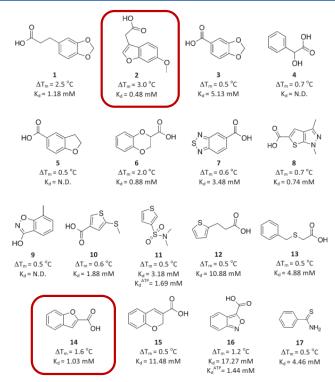


Nat Rev Microbiology 2003

Screening for pantothenate synthetase inhibitors

Pantothenate (vitamin B5)


- essential precursor to coenzyme A
- all enzymes absent in mammals
- de novo synthesis important for bacteria, including M. tuberculosis
- mutant can get pantotheate through salvage pathway, but no disease
- → pantotheate synthase is a good target


pantothenate synthetase: new target

Ciulli et al. ChemBioChem 2008

Fragment screen to identify binders

Silvestre et al. PNAS 2013

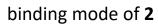
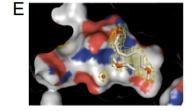
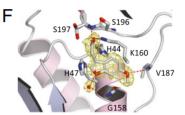
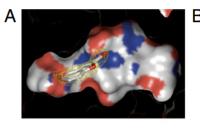


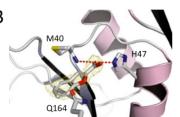
Fig. 1. The hits identified in the primary thermal shift screen and validated by secondary NMR spectroscopy screen, with K_d determined by ITC. The fragments exhibited a varied range in both ΔT_m (from 0.5 to 3.0 °C) and affinities (K_d from 480 μ M to 17.3 mM).

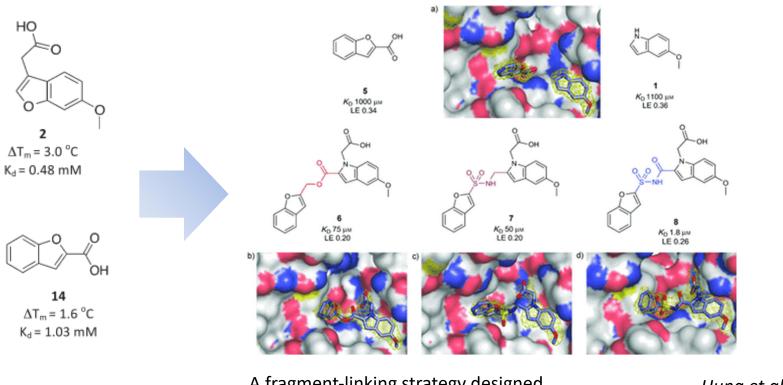

Follow – up on hits to obtain thermodynamics of binding


Table 1. Thermodynamic binding parameters determined by ITC

Fragment	ΔH , kcal/mol	ΔG , kcal/mol	K_{d} , mM	LE
1	-13.9 ± 0.1	-4.0 ± 0.1	1.2 ± 0.01	0.29
2	-10.1 ± 0.2	-4.5 ± 0.3	0.5 ± 0.01	0.30
3	-11.6 ± 0.2	-3.1 ± 0.3	5.1 ± 0.2	0.26
6 (racemate)	-10.3 ± 0.05	-4.2 ± 0.1	0.9 ± 0.04	0.32
6 (R-enantiomer)	-7.9 ± 0.1	-4.1 ± 0.1	0.9 ± 0.02	0.32
6 (S-enantiomer)	-12.3 ± 0.2	-4.3 ± 0.2	0.7 ± 0.02	0.33
7	-9.4 ± 0.1	-3.3 ± 0.1	3.5 ± 0.04	0.28
8	-7.51 ± 0.1	-4.2 ± 0.1	0.7 ± 0.02	0.32
10	-7.2 ± 0.1	-3.7 ± 0.1	1.9 ± 0.03	0.37
11	-16.2 ± 0.8	-3.4 ± 0.9	3.2 ± 0.2	0.31
11 (in the presence of ATP)	-1.5 ± 0.05	-3.8 ± 0.1	1.7 ± 0.08	0.34
12	-21.2 ± 1.0	-2.7 ± 1.0	10.9 ± 0.6	0.27
13	-10.7 + 0.3	-3.1 + 0.3	4.9 + 0.2	0.26
14	-8.7 ± 0.2	-4.0 ± 0.2	1.0 ± 0.01	0.33
15	-12.3 ± 0.7	-2.3 ± 0.7	11.5 ± 0.8	0.18
16	-11.3 ± 0.02	-2.6 ± 0.1	17.3 ± 0.8	0.22
16 (in the presence of ATP)	-1.8 ± 0.4	-3.8 ± 0.4	1.4 ± 0.02	0.32
17	-5.3 ± 0.2	-3.1 ± 0.2	4.5 ± 0.2	0.34






binding mode of **14**

From fragments to inhibitors

A fragment-linking strategy designed for *M. tuberculosis* pantothenate synthetase

Hung et al. Angew Chem 2009

Binding interactions are the foundation of biology

David Goodsell

Cellular signaling – Receptor ligand interactions

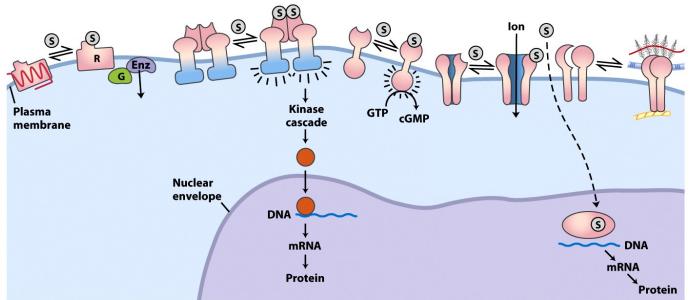
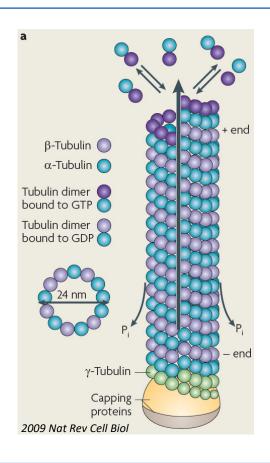
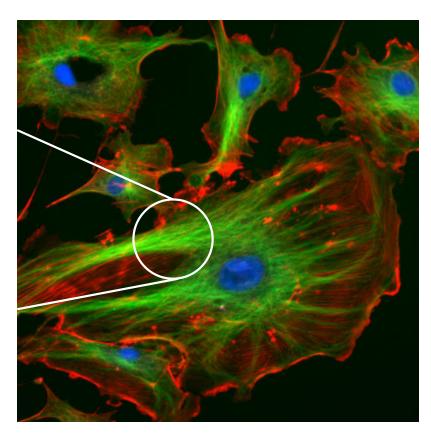
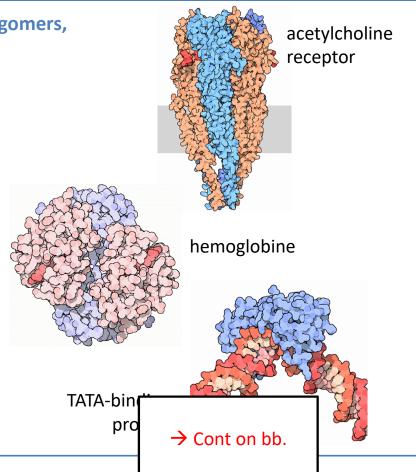
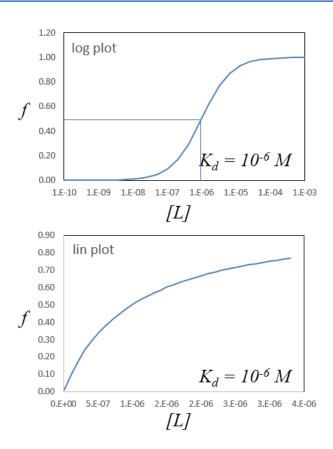




Figure 12-2
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company

Protein – protein association: Large structures




Types of association reactions

Protein – protein binding (homo-oligomers, hetero-oligomers)

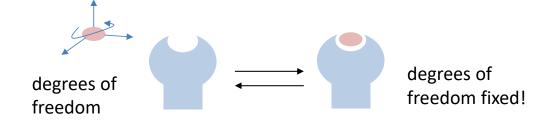
- oligomeric enzymes
 - metabolic enzymes
 - ribosomes
 - · channel proteins and pores
 - molecular machines
- structural proteins
 - cytoskeleton
 - extracellular proteins
- Receptor ligand interactions
 - signaling and import
 - cell surface receptors
 - intracellular receptor
- Protein DNA binding
 - transcription factors
 - chromatin
 - DNA enzymes

Binding curves for one site binding

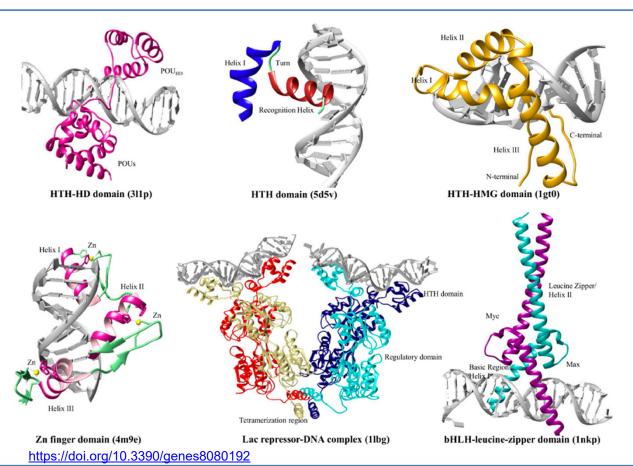
$$R+L \longrightarrow RL$$

sigmoidal binding curve

advantage of semilogarithmic plot: both baselines are available

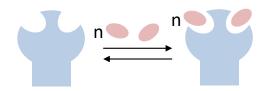

The free energy of binding

The energy of a ligand-receptor interaction is determined by ΔG :


$$\Delta G = RT \ln K_{\scriptscriptstyle D}$$

... whereas ΔG itself can be separated into enthalpy and entropy

$$\Delta G = \Delta H - T \Delta S$$
+ ionic + hydrophobic effect
+ vdW - loss of ligand
+ H-bonds entropy!


Calculation example

- You have a protein (transcription factor) binding to a particular DNA sequence with a dissociation constant of 10⁻⁹ M.
- Now, you test a different sequence and find that the protein binds tenfold (10x) better
- what is the free energy difference between the two interactions?
- Could you suggest what molecular interaction could account for that difference?

Binding to multiple non-interacting sites

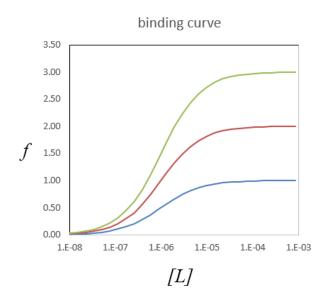
$$R + nL \longleftrightarrow \cdots \longleftrightarrow RL_n$$

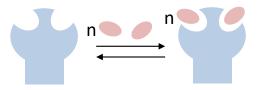
$$L + s \rightleftharpoons L_b$$

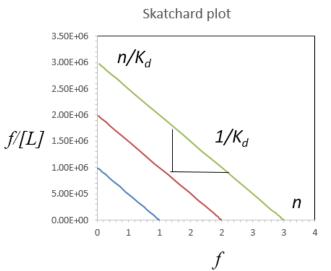
for a single site: $L + s \longrightarrow L_b$ $K_d = \frac{[s][L]}{[L_b]}$

s: free binding site

$$f = \frac{RL + 2RL_2 + 3RL_3 + \dots}{R + RL + RL_2 + \dots} = \frac{\sum_{i=1}^{n} iRL_i}{\sum_{i=0}^{n} RL_i}$$
 fraction of ligand bound per macromolecule

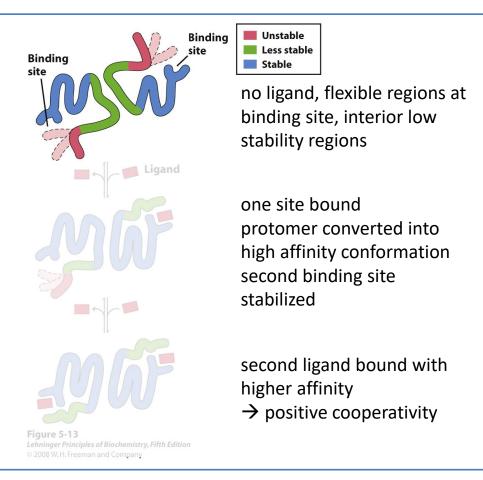

$$f = \frac{\sum_{i=1}^{n} i[R][L]^{i} / K'_{i}}{\sum_{i=0}^{n} [R][L]^{i} / K'_{i}} = \frac{\sum_{i=1}^{n} i[L]^{i} / K'_{i}}{\sum_{i=0}^{n} [L]^{i} / K'_{i}} \qquad f = \frac{n[L]}{[L] + K_{d}}$$


$$f = \frac{\mathbf{n}[L]}{[L] + K_d}$$


Binding isotherm for multi-site binding

Scatchard plot for multisite binding

Linearization method



Plot of the ratio of bound ligand, L_b and unbound ligand, $L\/$ vs. L_b

Cooperative binding

Cooperativity: Hemoglobin

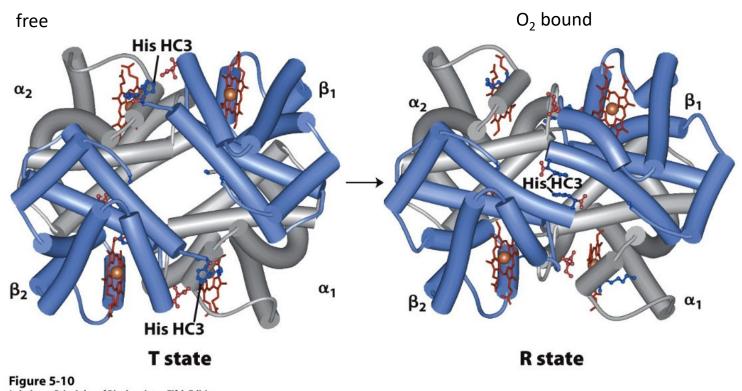
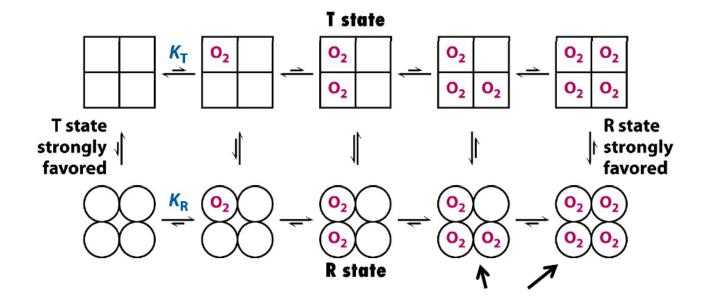
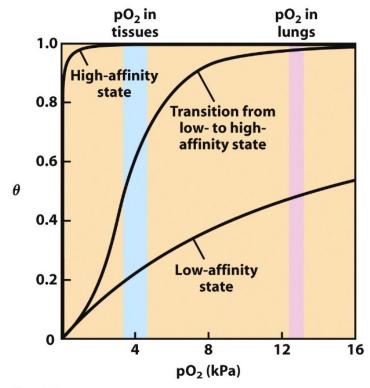



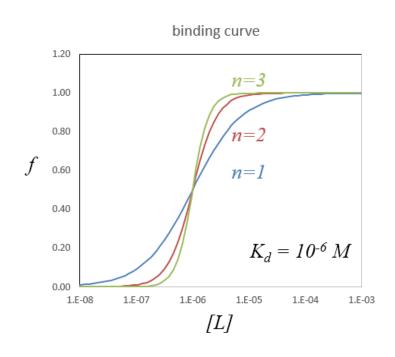
Figure 5-10
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

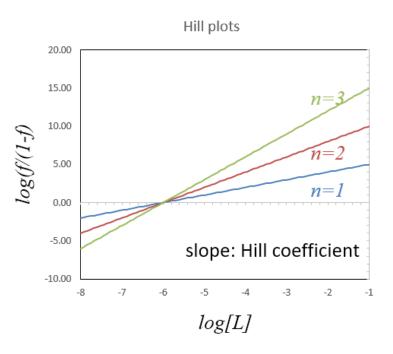
Fun fact: 750 g hemoglobin per adult, 10^{22} molecules (10^8 molecules per blood cell).

Cooperativity: Hemoglobin

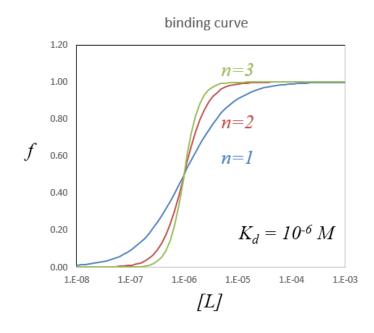
Cooperativity: Hemoglobin




Figure 5-12
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company


Finely tuned transition between high- to low affinity state

- transport function of hemoglobin
- transfer to myoglobin (only high affinity state)
- blood O2 saturation: critical parameter


discussion on bb

The Hill plot

Interpretation of the Hill coefficient

For a receptor / protein with x binding sites:

Total cooperativity (all-or-none transition): n = x

No cooperativitiy: n = 1

All other cases: 1 < n < x

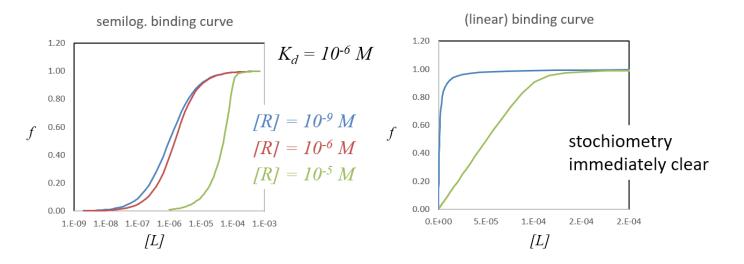
Empirical description of the behavior

Effect of the receptor concentration

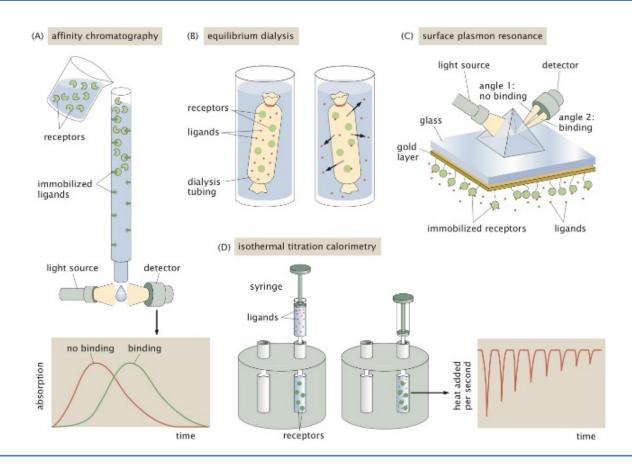
$$R + L \xrightarrow{K_d} RL$$

Up to this point, we have assumed that [R] is much lower than the K_d

discussion on bb


Effect of the receptor concentration

$$R + L \xrightarrow{K_d} RL$$


Up to this point, we have assumed that [R] is much lower than the K_d

if this is not the case the fraction bound ligand is expressed as:

$$\frac{[RL]}{[R_{tot}]} = \frac{K_d + [R_{tot}] + [L_{tot}]}{2} - \frac{\sqrt{(K_d + [R_{tot}] + [L_{tot}])^2 - 4[R_{tot}][L_{tot}]}}{2}$$

Measuring binding interactions

8-Binding interactions p. 45

Fluorescence anisotropy: Transition dipole moment

Interaction with light:

Incident light E induces a dipole μ_{ind} :

$$\mu_{ind} = \alpha \cdot E$$

 α : polarisability

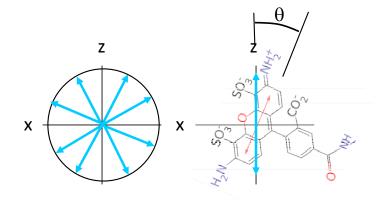
Transition dipole moment:

Ground state wave funct.: ψ_a Excited state wave funct.: ψ_b

$$\langle \psi_b | \underline{\mu} | \psi_a \rangle$$

can be interpreted as a vector

Hoefling et al. PLOS ONE 2011


Excitation of chromophore subpopulation

Conditions:

Immobile chromophores (e.g. embedded in a glass)

Excitation light vertically polarized

Probability of absorption: $p \sim \cos^2 \theta$

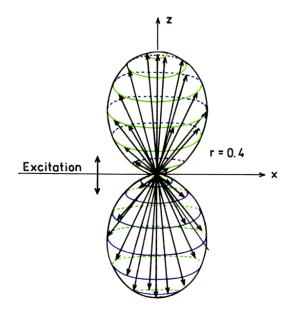
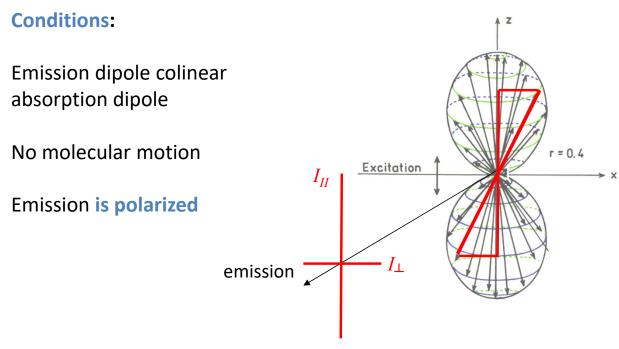



Figure 10.6. Excited-state distribution for immobile fluorophores with $r_0 = 0.4$.

Lakowicz, Principles of fluorescence spectroscopy

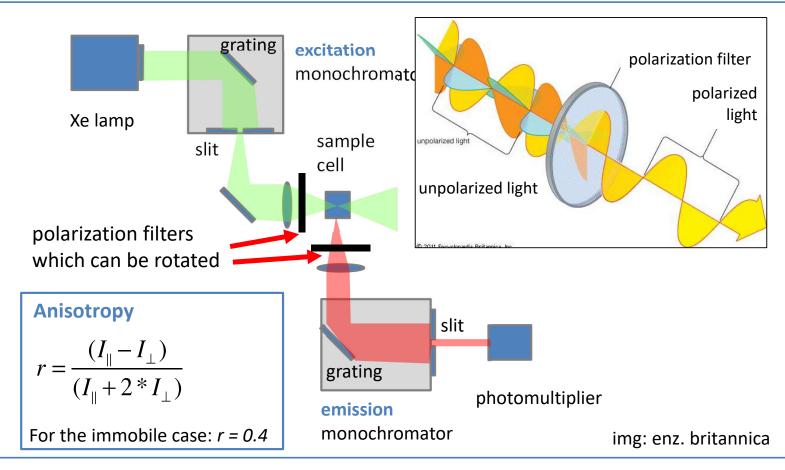

Fluorescence emission anisotropy

Figure 10.6. Excited-state distribution for immobile fluorophores with $r_0 = 0.4$.

Lakowicz, Principles of fluorescence spectroscopy

Measuring fluorescence anisotropy

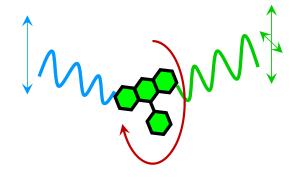
Loss of fluorescence anisotropy

Anisotropy

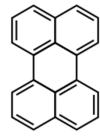
$$r = \frac{(I_{\parallel} - I_{\perp})}{(I_{\parallel} + 2 * I_{\perp})}$$

Rotational diffusion:

The Perrin equation


$$\frac{r_o}{r} = 1 + \frac{\tau}{\theta} = 1 + 6D\tau$$

 r_0 : anisotropy in the absence of motion


 τ : fluorescence lifetime

 θ : rotation correlation time

D: rotational diffusion coefficient

e.g.: Perylene

 r_0 : 0.36 τ : 6 ns

Anisotropy in solution (EtOH): 0.005

Loss of fluorescence anisotropy: Proteins

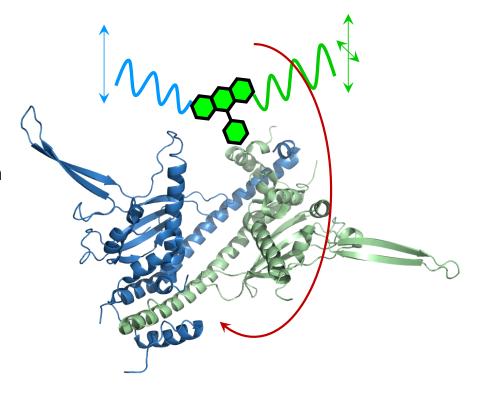
Rotational diffusion:

The Perrin equation

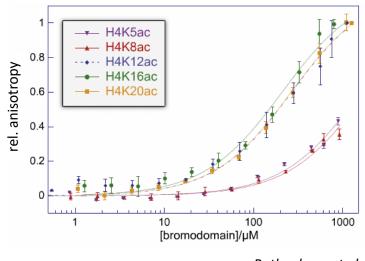
$$\frac{r_o}{r} = 1 + \frac{\tau}{\theta} = 1 + 6D\tau$$

For a 50 kDa protein the rotation correlation time θ = 14 ns

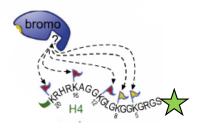
$$\theta = \frac{\eta V}{RT} = \frac{\eta}{RT} \cdot M(v + h)$$


 η = viscosity

V = volume

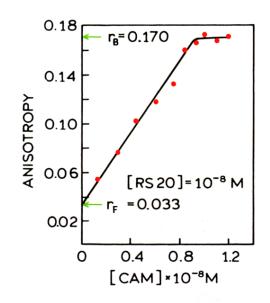

M = molecular weight

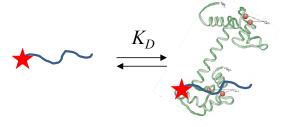
v = specific volume protein


h = hydration (g/g protein)

Measuring protein-protein interactions with anisotropy

Ruthenburg et al. Cell 2011

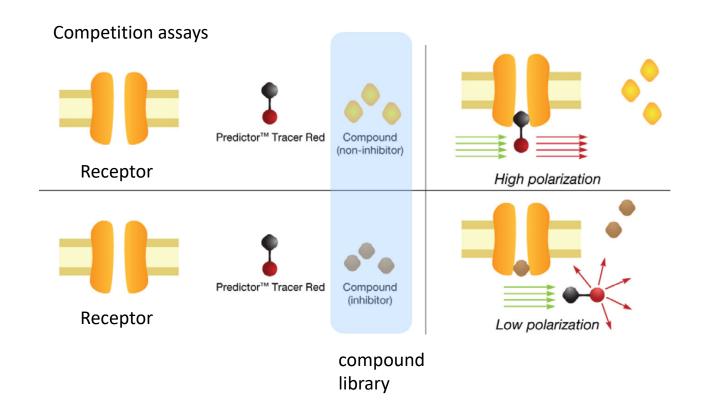

Protein domain (bromodomain) interacting with modified histone peptides


Peptides contain fluorophore, are kept at the same concentration

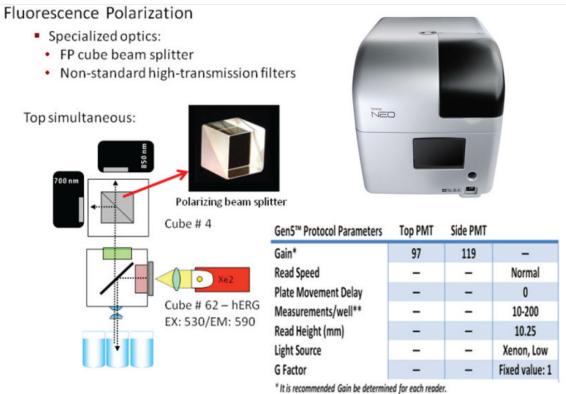
Protein is titrated and anisotropy is determiend for each concentration

→ Kd is obtained

Stochiometry determined by anisotropy measurement

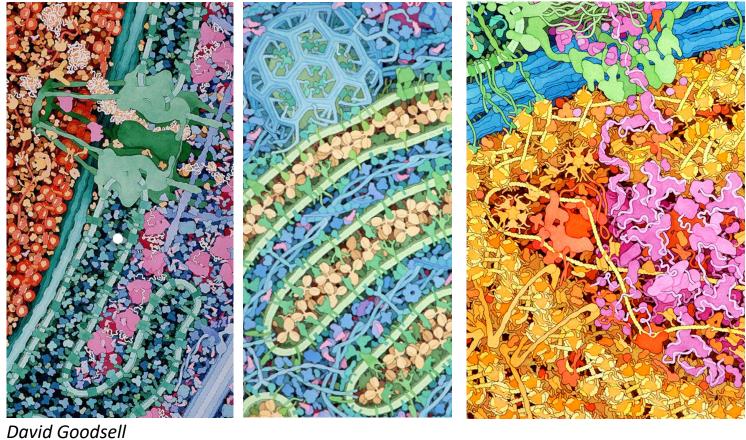


Fluorescence anisotropy measurements can be used to determine binding reactions


Example: MLCK peptide (RS20) binds calmodulin

Determining tryptophan fluorescence anisotropy in peptide, the binding constant can be determined in a titration.

Fluorescence anistropy in HTS


High throughput evaluation using plate readers

Source: Biotek

^{**}Higher measurements/well can result in greater precision & specificity but lower read times

In cells, interactions are managed by compartmentalization

8-Binding interactions p. 56